Abstract
We consider discrete least-squares methods using radial basis functions. A general ℓ2-Tikhonov regularization with W2m-penalty is considered. We provide error estimates that are comparable to kernel-based interpolation in cases which the function it is approximating is within and is outside of the native space of the kernel. Our proven theories concern the denseness condition of collocation points and selection of regularization parameters. In particular, the unregularized least-squares method is shown to have W2μ(Ω) convergence for μ > d/2 on smooth domain Ω⊂Rd. For any properly regularized least-squares method, the same convergence estimates hold for a large range of μ ≥ 0. These results are extended to the case of noisy data. Numerical demonstrations are provided to verify the theoretical results. In terms of applications, we also apply the proposed method to solve a heat equation whose initial condition has huge oscillation in the domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.