Abstract

Genetic depletion of cyclin-dependent kinase 12 (CDK12) or selective inhibition of an analog-sensitive CDK12 reduces DNA damage repair gene expression, but selective inhibition of endogenous CDK12 is difficult. Here, we report the development of MFH290, a novel cysteine (Cys)-directed covalent inhibitor of CDK12/13. MFH290 forms a covalent bond with Cys-1039 of CDK12, exhibits excellent kinome selectivity, inhibits the phosphorylation of serine-2 in the C-terminal domain (CTD) of RNA-polymerase II (Pol II), and reduces the expression of key DNA damage repair genes. Importantly, these effects were demonstrated to be CDK12-dependent as mutation of Cys-1039 rendered the kinase refractory to MFH290 and restored Pol II CTD phosphorylation and DNA damage repair gene expression. Consistent with its effect on DNA damage repair gene expression, MFH290 augments the antiproliferative effect of the PARP inhibitor olaparib.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.