Abstract

Traditional age hardening mechanisms in refractory ceramics consist of precipitation of fine particles. These processes are vital for widespread wear-resistant coating applications. Here, we report novel Guinier-Preston zone hardening, previously only known to operate in soft light-metal alloys, taking place in refractory ceramics like multicomponent nitrides. The added superhardening, discovered in thin films of Ti-Al-W-N upon high temperature annealing, comes from the formation of atomic-plane-thick W disks populating {111} planes of the cubic matrix, as observed by atomically resolved high resolution scanning transmission electron microscopy and corroborated by ab initio calculations and molecular dynamics simulations. Guinier-Preston zone hardening concurrent with spinodal decomposition is projected to exist in a range of other ceramic solid solutions and thus provides a new approach for the development of advanced materials with outstanding mechanical properties and higher operational temperature range for the future demanding applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.