Abstract
Ferroptosis is a form of non-apoptotic cell death, regulated by phospholipid hydroperoxide glutathione peroxidase 4 (GPX4), a selenoprotein with a selenocysteine residue (sec) in the active site. GPX4 is a promising target for cancer cells in therapy-resistant conditions via ferroptosis, which can reduce the level of lipid reactive oxygen species (ROS). So far, all existing GPX4 inhibitors covalently bind to GPX4 via a reactive alkyl chloride moiety or masked nitrile-oxide electrophiles with poor selectivity and pharmacokinetic properties and most were obtained by cell phenotype-based screening. Lacking of effective high-throughput screening methods for GPX4 protein limits the discovery of GPX4 inhibitors. Here, we report a fluorescence polarization (FP)-based high throughput screening (HTS) assay for GPX4-U46C-C10A-C66A in vitro, and found Metamizole sodium from our in-house compound library inhibits GPX4-U46C-C10A-C66A enzyme activity. Structure-activity relationships (SAR) demonstrated the importance of sulfonyl group on interaction between Metamizole sodium and GPX4-U46C-C10A-C66A. Our FP assay could be an effective tool for discovery of GPX4 inhibitors and Metamizole sodium was a potential inhibitor for GPX4 in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.