Abstract

ABSTRACT Malaria is a lethal disease that claims thousands of lives worldwide annually. The objective of this study was to identify new natural compounds that can target two P. falciparum enzymes; P. falciparum Dihydroorotate dehydrogenase (PfDHODH) and P. falciparum phosphoethanolamine methyltransferase (PfPMT). To accomplish this, e-pharmacophore modelling and molecular docking were employed against PfDHODH. Following this, 1201 natural compounds with docking scores of ≤ −7 kcal/mol were docked into the active site of the second enzyme PMT. The top nine compounds were subjected to further investigation using MM-GBSA free binding energy calculations and ADME analysis. The results revealed favourable free binding energy values better than the references, as well as acceptable pharmacokinetic properties. Compounds ZINC000013377887, ZINC000015113777, and ZINC000085595753 were scrutinized to assess their interaction stability with the PfDHODH enzyme, and chemical stability reactivity using molecular dynamics (MD) simulation and density functional theory (DFT) calculations. These findings indicate that the three natural compounds are potential candidates for dual PfDHODH and PfPMT inhibitors for malaria treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.