Abstract

In the present study, a series of coumarins, including eight undescribed bis-isoprenylated ones Spinifoliumin A-H, were isolated and identified from the aerial parts of Zanthoxylum dimorphophyllum var. spinifolium (ZDS), a plant revered in traditional Chinese medicine, particularly for treating rheumatoid arthritis (RA). The structures of the compounds were elucidated using 1D and 2D NMR spectroscopy, complemented by ECD, [Rh2(OCOCF3)4]-induced ECD, Mo2(OAc)4 induced ECD, IR, and HR-ESI-MS mass spectrometry. A network pharmacology approach allowed for predicting their anti-RA mechanisms and identifying the MAPK and PI3K-Akt signaling pathways, with EGFR as a critical gene target. A CCK-8 method was used to evaluate the inhibition activities on HFLS-RA cells of these compounds. The results demonstrated that Spinifoliumin A, B, and D-H are effective at preventing the abnormal proliferation of LPS-induced HFLS-RA cells. The results showed that compounds Spinifoliumin A, D, and G can significantly suppress the levels of IL-1β, IL-6, and TNF-α. Moreover, molecular docking methods were utilized to confirm the high affinity between Spinifoliumin A, D, and G and EGFR, SRC, and JUN, which were consistent with the results of network pharmacology. This study provides basic scientific evidence to support ZDS's traditional use and potential clinical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.