Abstract
Increasing antimicrobial resistance underscores the urgent need for new antibiotics with unique mechanisms. Type I signal peptidase (SPase I) is crucial for bacterial survival and a promising target for antibiotics. Herein we designed and synthesized innovative tetrahydroacridine-9-carboxylic acid derivatives by optimizing the initial hit compound SP11 based on virtual screening. Structure-activity relationship (SAR) studies and bioactivity assessments identified compound C09 as a standout, showing excellent in vitro antimicrobial activity against MRSA and other multidrug-resistant Gram-positive pathogens. C09 targets SPase I with a favorable affinity, disrupts bacterial cell membranes, and eradicates biofilms, reducing resistance risk. In vivo tests in a murine MRSA skin infection model demonstrated significant efficacy. Additionally, C09 has good liver microsome metabolic stability, safe hemolytic activity and mammalian cytotoxicity, as well as a good in vivo safety profile. Overall, our findings highlight the potential of tetrahydroacridine-9-carboxylic acid derivatives as a novel class of antibiotics against multidrug-resistant Gram-positive bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.