Abstract
Abstract We report the results from the broadband X-ray monitoring of the new Galactic black hole candidate MAXI J1803−298 with MAXI/GSC and Swift/BAT during its outburst. After the discovery on 2021 May 1, the soft X-ray flux below 10 keV rapidly increased for ∼10 days, then gradually decreased over five months. In the brightest phase, the source exhibited the state transition from the low/hard state to the high/soft state via the intermediate state. The broadband X-ray spectrum during the outburst is well described with a disk blackbody plus its thermal or nonthermal Comptonization. Before the transition, the source spectrum is described by a thermal Comptonization component with a photon index of ∼1.7 and an electron temperature of ∼30 keV, while a strong disk blackbody component is observed after the transition. The spectral properties in these periods are consistent with the low/hard state and the high/soft state, respectively. A sudden flux drop with a duration of a few days, unassociated with a significant change in the hardness ratio, was found in the intermediate state. A possible cause of this variation is that the mass accretion rate rapidly increased at the disk transition, which induced a strong Compton-thick outflow and scattered out the X-ray flux. Assuming a nonspinning black hole, we estimate the black hole mass of MAXI J1803−298 to be 5.8 ± 0.4 ( cos i / cos 70 ° ) − 1 / 2 ( D / 8 kpc ) M ⊙ (where i and D are the inclination angle and the distance, respectively) from the inner disk radius obtained in the high/soft state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.