Abstract

BackgroundThe JAK2-STAT signaling pathway plays a critical role in myeloproliferative neoplasms (MPN). An activating mutation in JAK2 (V617F) is present in ~ 95% of polycythemia vera, essential thrombocythemia, and primary myelofibrosis cases. This study aims to explore the selective JAK2V617F inhibitor, evaluate the efficacy and possible mechanism of ZT55 on MPN.MethodsHTRF assays were conducted to evaluate the selective inhibition of ZT55 for JAKs. Cell apoptosis, proliferation, and cycle arrest assays were performed to examine the effect of ZT55 on HEL cell line with JAK2V617F mutation in vitro. Western analysis was used to monitor the expression and activity of proteins on JAK2/STAT pathway. A mice xenograft model was established to evaluate the antitumor efficacy of ZT55 in vivo. Peripheral blood samples from patients with the JAK2V617F mutation were collected to estimate the effect of ZT55 on erythroid colony formation by colony-forming assay.ResultsWe found that ZT55 showed a selective inhibition of a 0.031 μM IC50 value against JAK2. It exhibited potent effects on the cellular JAK-STAT pathway, inhibiting tyrosine phosphorylation in JAK2V617F and downstream STAT3/5 transcription factors. ZT55 inhibited the proliferation of the JAK2V617F-expressing HEL cell line, leading to cell cycle arrest at the G2/M phase and induction of caspase-dependent apoptosis. Notably, ZT55 also significantly suppressed the growth of HEL xenograft tumors in vivo. Further evaluation indicated that ZT55 blocked erythroid colony formation of peripheral blood hematopoietic progenitors from patients carrying the JAK2V617F mutation.ConclusionThese results suggest that ZT55 is a highly-selective JAK2 inhibitor that can induce apoptosis of human erythroleukemia cells by inhibiting the JAK2-STAT signaling.

Highlights

  • The JAK2-Signal transducer and activator of transcription (STAT) signaling pathway plays a critical role in myeloproliferative neoplasms (MPN)

  • Due to the crucial role played by active JAK2 in tumor cell transformation and proliferation, as well as on the increased prevalence of the JAK2V617F mutation in MPNs, JAK2 has become a potential molecular target for therapeutic intervention in MPN and other malignancies associated with abnormal JAK2-STAT signaling

  • This study suggests that ZT55 represents a new class of highly-selective, small-molecule therapeutic agents for the treatment of myeloproliferative neoplasms caused by the activating V617F mutation in JAK2

Read more

Summary

Introduction

The JAK2-STAT signaling pathway plays a critical role in myeloproliferative neoplasms (MPN). The myeloproliferative neoplasms (MPN), including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are characterized by elevated bone marrow production of erythrocytes and megakaryocytes. This group of clonal hematopoietic malignancies is characterized by an increased risk of acute myeloid leukemia (AML) transformation [1,2,3]. Due to the crucial role played by active JAK2 in tumor cell transformation and proliferation, as well as on the increased prevalence of the JAK2V617F mutation in MPNs, JAK2 has become a potential molecular target for therapeutic intervention in MPN and other malignancies associated with abnormal JAK2-STAT signaling

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.