Abstract

Calcium and integrin binding protein 1 (CIB1) is a small, intracellular protein recently implicated in survival and proliferation of triple-negative breast cancer (TNBC). Considering its interactions with PAK1 and downstream signaling, CIB1 has been suggested as a potential therapeutic target in TNBC. As such, CIB1 has been the focus of inhibitor discovery efforts. To overcome issues of potency and stability in previously reported CIB1 inhibitors, we deploy mRNA display to discover new cyclic peptide inhibitors with improved biophysical properties and cellular activity. We advance UNC10245131, a cyclic peptide with low nanomolar affinity and good selectivity for CIB1 over other EF-hand domain proteins and improved permeability and stability over previously identified linear peptide inhibitor UNC10245092. Unlike UNC10245092, UNC10245131 lacks cytotoxicity and does not affect downstream signaling. Despite this, UNC10245131 is a potent ligand that could aid in clarifying roles of CIB1 in TNBC survival and proliferation and other CIB1-associated biological phenotypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.