Abstract

We consider the problem of finding common behavioral patterns among travelers in an airline network through the process of clustering. Travelers can be characterized at relational or transactional level. In this article, we focus on the transactional level characterization; our unit of analysis is a single trip, rather than a customer relationship comprising multiple trips. We begin by characterizing a trip in terms of a number of features that pertain to the booking and travel behavior. Trips thus characterized are then grouped using an ensemble clustering algorithm that aims to find stable clusters as well as discover subgroup structures within groups. A multidimensional analysis of trips based on these groupings leads us to discover non-trivial patterns in traveler behaviour that can then be exploited for better revenue management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.