Abstract

An in-depth analysis of the interannual variability of storms is required to detect changes in soil erosive power of rainfall, which can also result in severe on-site and off-site damages. Evaluating long-term rainfall erosivity is a challenging task, mainly because of the paucity of high-resolution historical precipitation observations that are generally reported at coarser temporal resolutions (e.g., monthly to annual totals). In this paper we suggest overcoming this limitation through an analysis of long-term processes governing rainfall erosivity with an application to datasets available the central Ruhr region (Western Germany) for the period 1701–2011. Based on a parsimonious interpretation of seasonal rainfall-related processes (from spring to autumn), a model was derived using 5-min erosivity data from 10 stations covering the period 1937–2002, and then used to reconstruct a long series of annual rainfall erosivity values. Change-points in the evolution of rainfall erosivity are revealed over the 1760s and the 1920s that mark three sub-periods characterized by increasing mean values. The results indicate that the erosive hazard tends to increase as a consequence of an increased frequency of extreme precipitation events occurred during the last decades, characterized by short-rain events regrouped into prolonged wet spells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.