Abstract

Conformance checking allows organizations to compare process executions recorded by the IT system against a process model representing the normative behavior. Most of the existing techniques, however, are only able to pinpoint where individual process executions deviate from the normative behavior, without considering neither possible correlations among occurred deviations nor their frequency. Moreover, the actual control-flow of the process is not taken into account in the analysis. Neglecting possible parallelisms among process activities can lead to inaccurate diagnostics; it also poses some challenges in interpreting the results, since deviations occurring in parallel behaviors are often instantiated in different sequential behaviors in different traces. In this work, we present an approach to extract anomalous frequent patterns from historical logging data. The extracted patterns can exhibit parallel behaviors and correlate recurrent deviations that have occurred in possibly different portions of the process, thus providing analysts with a valuable aid for investigating nonconforming behaviors. Our approach has been implemented as a plug-in of the ESub tool and evaluated using both synthetic and real-life logs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.