Abstract

Studying the structure–property relation of biological materials can not only provide insight into the physical mechanisms underlying their superior properties and functions but also benefit the design and fabrication of advanced biomimetic materials. In this paper, we present a microstructure-based fracture mechanics model to investigate the toughening effect due to the crack-bridging mechanism of platelets. Our theoretical analysis demonstrates the crucial contribution of this mechanism to the high toughness of nacre. It is found that the fracture toughness of nacre exhibits distinct dependence on the sizes of platelets, and the optimized ranges for the thickness and length of platelets required to achieve higher fracture toughness are given. In addition, the effects of such factors as the mechanical properties of the organic phase (or interfaces), the effective elastic modulus of nacre, and the stacking pattern of platelets are also examined. Finally, some guidelines for the biomimetic design of novel materials are proposed based on our theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.