Abstract

The 'tipping point' phenomenon is discussed as a mathematical object, and related to the behaviour of non-linear discontinuity waves in the dynamics of topical sociological and biological problems. The theory of such waves is applied to two illustrative systems in particular: a crowd-continuum model of pedestrian (or traffic) flow; and an hyperbolic reaction-diffusion model for the spread of the hantavirus infection (a disease carried by rodents). In the former, we analyse propagating acceleration waves, demonstrating how blow-up of the wave amplitude might indicate formation of a 'human-shock', that is, a 'tipping point' transition between safe pedestrian flow, and a state of overcrowding. While in the latter, we examine how travelling waves (of both acceleration and shock type) can be used to describe the advance of a hantavirus infection-front. Results from our investigation of crowd models also apply to equivalent descriptions of traffic flow, a context in which acceleration wave blow-up can be interpreted as emergence of the 'phantom congestion' phenomenon, and 'stop-start' traffic motion obeys a form of wave propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.