Abstract
In this paper we study qualitative properties of the socalled symplectic dynamic system (S) zδA =Stz on an arbitrary time scale T, providing a unified theory for discrete symplectic systems and differential linear Hamiltonian systems . We define dis-conjugacy (no focal points) for conjoined bases of (S) and prove, under a certain minimal normality assumption, that disconjugacy of (S) on the interval under consideration is equival ent to the positivity of the associated quadratic functional. Such statement is commonly called Jacobi condition. We discuss also the solvability of the corresponding Riccati matrix equation and transformations. This work may be regarded as a generalization of the results recently obtained by the second author for linear Hamiltonian systems on time scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.