Abstract
Proteins are located in the twilight zone between chemistry and biology, where a peculiar kind of complexity starts. Proteins are the smallest 'devices' showing a sensible adaptation to their environment by the production of appropriate behavior when facing a specific stimulus. This fact qualifies (from the 'effector' side) proteins as nanomachines working as catalysts, motors, or switches. However (from the sensor side), the need to single out the 'specific stimulus' out of thermal noise qualifies proteins as information processing devices. Allostery corresponds to the modification of the configuration (in a broad sense) of the protein molecule in response to a specific stimulus in a non-strictly local way, thereby connecting the sensor and effector sides of the nanomachine. This is why the 'disclosing' of allostery phenomenon is at the very heart of protein function; in this chapter, we will demonstrate how a network-based representation of protein structure in terms of nodes (aminoacid residues) and edges (effective contacts between residues) is the natural language for getting rid of allosteric phenomena and, more in general, of protein structure/function relationships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.