Abstract
We present first discharge rate measurements for Micromegas detectors in the presence of a high longitudinal magnetic field in the GeV kinematical region. Measurements were performed by using two Micromegas detectors and a photon beam impinging a CH{sub 2} target in the Hall B of the Jefferson Laboratory. One detector was equipped with an additional GEM foil, and a reduction of the discharge probability by two orders of magnitude compared to the stand-alone Micromegas was observed. The detectors were p laced in the FROST solenoid providing a longitudinal magnetic field up to 5T. It allowed for precise measurements of the discharge probability dependence with a diffusion-reducing magnetic field. Between 0 and 5T, the discharge probability increased by a factor of 10 for polar angles between 19{degrees} and 34{degrees}. A GEANT4-based simulation developed for sparking rate calculation was calibrated against these data in order to predict the sparking rate in a high longitudinal magnetic field environment. This simulati on is then used to investigate the possible use of Micromegas in the Forward Vertex Tracker (FVT) of the future CLAS12 spectrometer. In the case of the FVT a sparking rate of 1Hz per detector was obtained at the anticipated CLAS12 luminosity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.