Abstract

Abstract Weirs are among the most essential hydraulic structures for measuring water discharge in open channels. The prediction of water discharge over weirs should be as precise and straightforward measured as feasible. The experimental investigation of flow prediction over varied heights of a conventional rectangular sharp-crested weir was conducted in the present work. The investigation evaluated five ratios of weir height to length, P/b, of 0.33, 0.4, 0.47, 0.53, and 0.6, different water discharges, Q, of up to 17.25 L/s, and different bed slopes, S, between 0.001 and 0.01. The experiment's findings reveal that a change in the bed slope has no significant effect on the brink depth, hb, for a constant water discharge. However, it influences the head over the weir, h, which is usually measured upstream of the weir location and used to predict water discharge. A simple, accurate formula was developed for predicting water discharge over rectangular sharp-crested weirs depending on the brink depth with mean absolute percent error (MAPE) and root-mean-square error (RMSE) of 1.714% and 0.229, respectively. In addition to having a simple form, the developed formula performs well, is unaffected by the bed slope, and applies to a wide range of h/P values, from 0.158 to 0.945.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.