Abstract

Reef corals are examples of metazoans that engage in mutualisms with a variety of microorganisms, including dinoflagellates, Bacteria, Archaea, and viruses. The high adaptive capacity of these microbial symbionts can be co-opted by their coral hosts, and various emergent traits of these associations, such as thermotolerance, are undergoing strong selection due to climate change. This selection may spur the rise of microbial ‘disaster taxa’: opportunistic, cosmopolitan generalists that can proliferate and increase host survivorship following disturbances. Coral bleaching (a stress-induced loss of dinoflagellates) constitutes one type of catastrophic disturbance for resident symbiont communities, and opens novel patches of host for colonization by microbial disaster taxa. Moreover, the compartmentalization of microbial symbionts within coral polyps reduces their effective population size and thus facilitates the spread of disaster taxa during times of environmental change. These phenomena suggest that, despite widespread loss of coral cover as a result of climate disturbances, the potential spread of resilient microbial disaster taxa in surviving colonies can have important implications for coral reef persistence over the coming decades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.