Abstract

Arrays of microwells connected by nanoscale channels with sizes on the order of 10 nm can be created in an ethylene glycol dimethacrylate (EGMDA) polymer using the DNA combing and imprinting technique. Larger micro-scale channels which lead into the microwell/nanochannel arrays are needed to allow the arrays to be externally filled with desired reagents, molecules and cells. In this work, direct-write femtosecond laser ablation was employed as a post process to fabricate these microscale filling channels. Single pulse and multiple pulses overlap ablation was first conducted on an EGMDA polymer using a focused femtosecond laser beam. Scanning electron microscopy was employed to measure the ablated channel width. Single pulse ablation threshold fluence and incubation coefficient were found and were used to predict microchannel width. Finally, femtosecond laser ablation was used to fabricate filling channels on microwell/nanochannel arrays. Fluorescent flow testing was performed to verify fluid connectivity between the laser-ablated filling channels and the microwell/nanochannel array. (Some figures in this article are in colour only in the electronic version)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.