Abstract
After injury to the CNS, the anatomical organization of the tissue is disrupted, posing a barrier to the regeneration of axons. Meningeal cells, a central participant in the CNS tissue response to injury, migrate into the core of the wound site in an unorganized fashion and deposit a disorganized extracellular matrix (ECM) that produces a nonpermissive environment. Previous work in our laboratory has shown that the presentation of nanometer-scale topographic cues to these cells influences their morphological, cytoskeletal, and secreted ECM alignment. In the present study, we provided similar environmental cues to meningeal cells and examined the ability of the composite construct to influence dorsal root ganglion regeneration in vitro. When grown on control surfaces of meningeal cells lacking underlying topographic cues, there was no bias in neurite outgrowth. In contrast, when grown on monolayers of meningeal cells with underlying nanometer-scale topography, neurite outgrowth length was greater and was directed parallel to the underlying surface topography even though there exists an intervening meningeal cell layer. The observed outgrowth was significantly longer than on laminin-coated surfaces, which are considered to be the optimal substrata for promoting outgrowth of dorsal root ganglion neurons in culture. These results suggest that the nanometer-level surface finish of an implanted biomaterial may be used to organize the encapsulation tissue that accompanies the implantation of materials into the CNS. It furthermore suggests a simple approach for improving bridging materials for repair of nerve tracts or for affecting cellular organization at a device-tissue interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.