Abstract

The pseudo intensity vector (PIV) is often used to analyze the directional properties of spatial room impulse responses. In the early part of the response, it is capable of estimating the directions of individual reflections. However, thus far, its behaviour in the late field is unclear. Specifically, it is unknown whether anisotropy, i.e., a direction-dependent energy distribution, is captured by the directional estimates. In this study, a closed-form expression of the directional distribution of the pressure-normalized pseudo intensity vector contingent on a general stochastical model of anisotropic fields was analytically derived. This paper shows that the probability density function of this PIV is a multivariate Cauchy distribution, which does indeed depend on the energy distribution of the field, yet the directional distribution has very limited degrees of freedom. The derived distribution is compared to the results of Monte Carlo simulations and fields captured with a microphone array in a real room. These results facilitate better understanding of the behaviour of parametric spatial room impulse response methods and may enable improved directional estimators for anisotropic fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.