Abstract
The ‘Appelmans protocol’ is used by Eastern European researchers to generate therapeutic phages with novel lytic host ranges. Phage cocktails are iteratively grown on a suite of mostly refractory bacterial isolates until the evolved cocktail can lyse the phage-resistant strains. To study this process, we developed a modified protocol using a cocktail of three Pseudomonas phages and a suite of eight phage-resistant (including a common laboratory strain) and two phage-sensitive Pseudomona aeruginosa strains. After 30 rounds of selection, phages were isolated from the evolved cocktail with greatly increased host range. Control experiments with individual phages showed little host-range expansion, and genomic analysis of one of the broad-host-range output phages showed its recombinatorial origin, suggesting that the protocol works predominantly via recombination between phages. The Appelmans protocol may be useful for evolving therapeutic phage cocktails as required from well-defined precursor phages.
Highlights
The emergence and increasing prevalence of bacterial strains that are resistant to available antibiotics poses a serious threat to world health [1], which, according to the World Health Organization (WHO), is heading toward a post-antibiotic era when many common infections will no longer have a cure [2]
In order to generate novel phages from our laboratory strains, we developed a protocol based on that used by the George Eliava Institute of Bacteriophage, Microbiology and Virology (IBMV), Tbilisi, Georgia
Eight bacterial strains can be tested on each plate
Summary
The emergence and increasing prevalence of bacterial strains that are resistant to available antibiotics poses a serious threat to world health [1], which, according to the World Health Organization (WHO), is heading toward a post-antibiotic era when many common infections will no longer have a cure [2]. This imminent threat demands an evaluation of novel approaches toward treating antibiotic-refractory infections. While such sources can offer a great diversity of phages from which to select, it is not always possible or efficient to isolate phages with the most clinically relevant host range
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.