Abstract

Combination of proteins with other nanomaterials offers a promising strategy to fabricate novel hybrids with original functions in biology, medicine, nanotechnology, and materials science. Under carefully selected experimental conditions, we show that graphene nanosheets are able to direct one-dimensional self-assembly of silk fibroin, forming an unprecedented type of nanohybrids. These silk/graphene hybrids combine physical properties of both constituents and form functional composites with well-ordered hierarchical structures. Due to the facile fabrication process and their tunable nanostructures, the resultant hybrids show promise in applications as diverse as tissue engineering, drug delivery, nanoelectronics, nanomedicine, biosensors, and functional composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.