Abstract

A promiscuous activity of an existing enzyme can confer an evolutionary advantage by providing an immediate response to a new selection pressure and a starting point for the divergence of a new enzyme. This work seeks to examine how this process might take place. Human carbonic anhydrase II (hCAII) is an enzyme that evolved to catalyze the reversible hydration of CO(2) and performs this task at a remarkable rate (k(cat) approximately 10(6) s(-)(1)). hCAII also exhibits promiscuous activity toward highly activated esters such as 4-nitrophenyl acetate. We describe a much weaker esterase activity of hCAII toward the bulkier and much less activated ester substrate 2-naphthyl acetate (2NA). Directed evolution of hCAII produced a variant with 40-fold higher rates toward 2NA, owing to two mutations: one within the active site (Ala65Val) and one at its mouth (Thr200Ala). Structure-activity studies suggest that these mutations led to adaptation of the active site for bulkier substrates and for the catalysis of nonactivated esters. The mutations did not, however, significantly alter the native activity of hCAII. Our results support the notion that the evolution of a new function can be driven by mutations that increase a promiscuous function (which serves as the starting point for the evolutionary process) but do not harm the native function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.