Abstract

We extend the Wolf direct, pairwise r(-1) summation method with spherical truncation to dipolar interactions in silica. The Tangney-Scandolo interatomic force field for silica takes regard of polarizable oxygen atoms whose dipole moments are determined by iteration to a self-consistent solution. With Wolf summation, the computational effort scales linearly in the system size and can easily be distributed among many processors, thus making large-scale simulations of dipoles possible. The details of the implementation are explained. The approach is validated by estimations of the error term and simulations of microstructural and thermodynamic properties of silica.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.