Abstract

Whole-mount fungal spores were examined by energy-filtering transmission electron microscopy. Conidia of Penicillium species and Ustilaginoidea virens were suspended in distilled water and directly placed on a glow-discharged formvar-coated copper grid. Energy-filtered images were taken from 0 to 100 eV loss regions. Due to their considerable inherent thickness, their globose morphology was evident. In zero-loss images, the fungal spores appeared to have higher contrast in general, showing darker periphery than unfiltered images. Most spores in zero-loss images exhibited almost homogeneous electron density across the spores. The contrast was partially inversed in low-loss images where more details of the outer cell wall ornamentations of spores could be discerned than zero-loss images. As obvious advantages of whole-mount spore imaging, it allows for ensuring two-dimensional images with higher spatial resolution than light microscopy and conventional scanning electron microscopy. If a higher resolution is needed to observe fungal surface structures such as fimbriae and rodlet layers, or discriminate an outer sheath enveloping spores, whole-mount spore imaging can be employed to unravel structural details.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.