Abstract

ABSTRACTChemical-mechanical polishing (CMP) involves complex mechanical and chemical interactions between a rough elastomeric pad, the wafer being polished and an abrasive slurry containing sub-micron diameter silica particles. The interaction between these abrasive particles and the wafer surface and their impact upon material removal rates is still unclear. Particle dynamics in a model CMP geometry are studied experimentally in this work. Only the particles that actually interact with, and presumably polish, the model wafer surface are visualized using total internal reflection fluorescence (TIRF). The effect of process properties such as particle diameter, particle material, pad-wafer separation and shear rate upon the particle concentration immediately adjacent to the wafer surface is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.