Abstract

This paper reports a method to build a semiclassical wave function corresponding to an invariant torus satisfying Einstein-Brillouin-Keller quantization conditions. Instead of calculating the stability matrix of the trajectory at each step, as in the standard method of Keller [Ann. Phys. (N.Y.) 4, 180 (1958)] or the modification of Maslov and Fedoriuk [Semiclassical Approximations in Quantum Mechanics (Reidel, Dordrecht, 1981)], we use the actual density of the trajectory, calculated by running the trajectory and counting passages through cells in coordinate space. The method is tested for a system of coupled Morse oscillators, and found to be comparable in accuracy to the standard method. It may be more useful than the standard method for testing ideas for semiclassical quantization in the chaotic regime. (c) 2000 The American Physical Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.