Abstract
Incorporating hetero-metal-atom, e.g., titanium, into zeolite frameworks can enhance the catalytic activity and selectivity in oxidation reactions. However, the rational design of zeolites containing titanium at specific sites is difficult because the precise atomic structure during synthesis process remained unclear. Here, a titanosilicate with predictable titanium distribution was synthesized by mediating vacancies in a defective MSE-type zeolite precursor, based on a pre-designed synthetic route including modification of vacancies followed by titanium insertion, where electron microscopy (EM) plays a key role at each step resolving the atomic structure. Point defects including vacancies in the precursor and titanium incorporated into the vacancy-related positions have been directly observed. The results provide insights into the role of point defects in zeolites towards the rational synthesis of zeolites with desired microscopic arrangement of catalytically active sites.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.