Abstract

The direct synthesis of H 2O 2 at low temperature (2 °C) from H 2 and O 2 using TiO 2-supported Au, Pd, and Au–Pd catalysts is discussed. The Au–Pd catalysts performed significantly better than the pure Pd/TiO 2 and Au/TiO 2 materials. Au–Pd particles were found with a core–shell structure, with Pd concentrated on the surface. The highest yields of H 2O 2 were observed with uncalcined catalysts, but these were particularly unstable, losing both metals during use. In contrast, samples calcined at 400 °C were stable and could be reused several times without loss of performance. These catalysts exhibited low activity for CO oxidation at 25 °C; conversely, catalysts effective for low-temperature CO oxidation were inactive for H 2 oxidation to H 2O 2. This anticorrelation is explored in terms of the mechanism by which the catalysts function and the design of catalysts for the selective oxidation of one of these substrates in the presence of the other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.