Abstract

H2O2 production by direct synthesis (H2 + O2 → H2O2) is a promising alternative to the energy-intensive anthraquinone oxidation process and to the use of chlorine for oxidation chemistry. Steady-state H2O2 selectivities are approximately 10-fold greater on AgPt octahedra (50%) than on Pt nanoparticles of similar size (6%). Moreover, the initial H2O2 formation rates and selectivities are sensitive to the fractional coverage of Pt atoms and their location on the surfaces of AgPt octahedra, which can be controlled by exposing these catalysts to either CO or inert gases at 373 K to produce Pt-rich (16% initial H2O2 selectivity) or Pt-poor (36% initial H2O2 selectivity) surfaces. Increasing the coordination of Pt to Ag significantly modifies the electronic structure of Pt active sites, which is reflected by a shift in the ν(C=O) singleton frequency in 13CO from 2016 cm–1 on Pt to ∼1975 cm–1 on AgPt. These bimetallic AgPt catalysts present lower activation enthalpies (ΔH⧧) for H2O2 formation (29 kJ mol–1 on Pt ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.