Abstract

Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer.

Highlights

  • There has been a tremendous interest in 3D printing which is one of research branches in additive direct printing approach of functional materials

  • Bottom inset schematics show the cross-sectional view of the grown Zinc oxide (ZnO) nanowire array

  • The urchin-like dense ZnO NWs show highly ordered outward radial directional growth because urchin-like radial growth minimizes the interaction among each nanowires and the affluent precursor supply from outside of the circular seed pattern redirects the nanowire growth to the outward direction compared with the central part [9]

Read more

Summary

Introduction

There has been a tremendous interest in 3D printing which is one of research branches in additive direct printing approach of functional materials. Additive direct printing method has relatively shorter history compared with conventional photolithography- and vacuum deposition-based microelectronics fabrication processes. Conventional IC processes involve multistep; The inkjet printing method opened a new research area in the direct nanomaterial manipulation on the predetermined locations with a controlled morphology and a specific location of nanoparticles [4,5,6] and nanowires [7,8], and more recently, direct local nanowire growth by seed nanoparticle inkjet printing has been demonstrated by Ko et al [9]. Inkjet printing of nanomaterials could overcome the difficulties encountered in multi-step serial processes, new approaches use the direct growth at specific location with desired nanowire morphology

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.