Abstract

Additive manufacturing (AM) has created the possibility of replacing traditional manufacturing techniques with faster, versatile, and cost-effective production options. In this study, we employed AM techniques to fabricate silicon carbide (SiC) radiation detectors based on commercial 4H-SiC wafers. Platinum (Pt) nanoparticle inks were synthesized and printed onto the surface of a 4H-SiC wafer using an aerosol jet printing technique to create Schottky diodes for radiation detection. The additive printed detectors were characterized for surface morphology through a scanning electron microscope (SEM) and atomic force microscope (AFM), and electronically by current-voltage (IV), capacitance-voltage (CV), and finally by alpha spectroscopy measurements. The printed detector achieved an energy resolution of 3.24% FWHM at 5.486 MeV, compared to 0.62% FWHM of a SiC detector fabricated by conventional cleanroom technologies and 0.3% FWHM of a commercially available Si detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.