Abstract

The use of direct-write dip-pen nanolithography (DPN) to generate covalently anchored, nanoscale patterns of oligonucleotides on both metallic and insulating substrates is described. Modification of DNA with hexanethiol groups allowed patterning on gold, and oligonucleotides bearing 5'-terminal acrylamide groups could be patterned on derivatized silica. Feature sizes ranging from many micrometers to less than 100 nanometers were achieved, and the resulting patterns exhibited the sequence-specific binding properties of the DNA from which they were composed. The patterns can be used to direct the assembly of individual oligonucleotide-modified particles on a surface, and the deposition of multiple DNA sequences in a single array is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.