Abstract

Bovine rhodopsin contains 11-cis-retinal as a light-absorbing chromophore that binds to a lysine residue of the apoprotein opsin via a protonated Schiff base linkage. Light isomerizes 11-cis-retinal into the all-trans form, which eventually leads to the formation of an enzymatically active state, metarhodopsin II (MII). It is widely believed that MII forms a pH-dependent equilibrium with metarhodopsin I (MI), but direct evidence for this equilibrium has not been reported. Here, we confirmed this equilibrium by direct observation of the mutual conversions of MI and MII upon changing the pH of the MI/MII mixture. We also observed a reversible binding of the synthetic peptide constituting the C-terminal 11 amino acids of the transducin alpha-subunit to MII, which resulted in change of the amounts of MI and MII in the equilibrium. Interestingly, addition of the peptide did not induce a simple pK(a) shift but rather induced an increase of the MII fraction at high pH. These results indicate that in addition to the MII that is formed from MI in a pH-dependent manner there also exists another MII, which is in equilibrium with MI in a pH-independent manner and can bind to the peptide. Therefore, there is no need for proton uptake by the protein moiety of opsin for the binding to the peptide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.