Abstract

Photoexcitation can lead to either homogeneous or heterogeneous transformations of a reactive surface. Homogeneous transformations result in a statistical mixture of reactants and products, whereas the outcome of heterogeneous transformations is a coexistence of macroscopic reactant and product domains, separated by a phase boundary. Heterogeneous photoinduced changes are also typically restricted to the surface, have individual phase structures that are inaccessible with classical diffraction methods, and possess surface properties that cannot readily be measured by the traditional wetting (water contact angle) technique. In this study, we demonstrate application of Atomic Force Microscopy (AFM) to obtain high spatial resolution surface energy distribution in the trans and cis domains on the surface of azobenzene single crystal. UV excitation of single crystals of 3′,4′-dimethyl-4-(dimethylamino)azobenzene results in domino-like trans-to-cis isomerization on their surface. In the AFM phase channel, this ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.