Abstract

Solid state systems derive their richness from the interplay between interparticle interactions and novel band structures that deviate from those of free particles. Strongly interacting systems, where both of these phenomena are of equal importance, exhibit a variety of theoretically interesting and practically useful phases. Systems of ultracold atoms are rapidly emerging as precise and controllable simulators, and it is precisely in this strongly interacting regime where simulation is the most useful. Here we demonstrate how to hybridize Bloch bands in optical lattices to introduce long-range ferromagnetic order in an itinerant atomic system. We find spontaneously broken symmetry for bosons with a double-well dispersion condensing into one of two distinct minima, which we identify with spin-up and spin-down. The density dynamics following a rapid quench to the ferromagnetic state confirm quantum interference between the two states as the mechanism for symmetry breaking. Unlike spinor condensates, where interaction is driven by small spin-dependent differences in scattering length, our interactions scale with the scattering length itself, leading to domains which equilibrate rapidly and develop sharp boundaries characteristic of a strongly interacting ferromagnet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.