Abstract

Polarized neutron scattering has been used to determine the changes in the distribution of unpaired electrons which take place in the martensitic transition in Ni2MnGa. Ni2MnGa is a ferromagnetic Heusler alloy which undergoes a reversible transition at about 220 K from a high temperature cubic phase to a low temperature tetragonal one. It has been suggested, on the basis of band structure calculations, that the structural phase transition is driven by a band Jahn-Teller distortion involving redistribution of electrons between 3d sub-bands of different symmetries. The results of the neutron scattering experiments show that the transition from the cubic to the tetragonal phase is accompanied by a transfer of magnetic moment from Mn to Ni. The unpaired electrons in the cubic phase have overall eg symmetry. In the tetragonal phase, the degeneracy of the eg and t2g bands is raised and the unpaired electrons are redistributed in such a way that the sub-bands based on orbitals extending towards the c-axis are preferentially occupied. Although the experimental moments differ in detail from those expected from band structure calculations, the change in symmetry of the magnetization distribution is consistent with a band Jahn-Teller origin for the phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.