Abstract

Direct numerical simulations of particle-laden homogeneous isotropic turbulence are performed to characterize the collision rate as a function of different particle properties. The fluid behaviour is computed using a three-dimensional Lattice Boltzmann Method including a spectral forcing scheme to generate the turbulence field. Under assumption of mass points, the transport of spherical particles is modelled in a Lagrangian frame of reference. In the simulations the influence of the particle phase on the fluid flow is neglected. The detection and performance of inelastic interparticle collisions are based on a deterministic collision model. Different studies with monodisperse particles are considered. According to the executed simulations, particles with small Stokes number possess a collision rate similar to the prediction of Saffman and Turner [1], whereas particles with larger Stokes numbers behave similarly to the theory of Abrahamson [2].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.