Abstract

Direct numerical simulation (DNS) of jets in cross-flow (JICF) has been carried out in this study, aiming for the investigation of vortex structure formation and evolution process associated with JICF. A recently developed DNS code is used, which solves three-dimensional (3D) compressible unsteady Navier–Stokes (NS) equations using high-order finite differences and multi-block structure grid treatment for complex geometry. Jet flow from a square duct, perpendicular to the mainstream flow, is introduced and the flow Reynolds number is 100 based on the jet duct diameter (D) and free-stream quantities. Two-dimensional (2D) calculations using various jet to free-stream velocity ratio (R = V jet/V free) reveals different vortex patterns and a further 3D study continues focusing on a velocity ratio of R = 2, for which complex vortex structure is produced. It is found from the 3D simulation that a counter-rotating vortex pair (CRVP) forms immediately after the jet exits, as observed from the experimental test and reproduced by other numerical simulations. The CRVP originates from the near wall viscous layer and its core position moves away from the wall as it evolves downstream. For the condition simulated, the CRVP is finally weakened (due to viscous diffusion) at about 1.6D downstream from the centre of the jet exit. No asymmetric CRVP has been observed, which was reported by other researchers for high-Reynolds number simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.