Abstract

An efficient technique for writing 2D oxide patterns on conductive substrates is proposed and demonstrated in this paper. The technique concerns a novel concept for selective electrodeposition, in which a minimum quantity of liquid electrolyte, through an extrusion nozzle, is delivered and manipulated into the desired shape on the substrate, meanwhile being electrodeposited into the product by an applied voltage across the nozzle and substrate. Patterns of primarily Cu2O with 80~90% molar fraction are successfully fabricated on stainless steel substrates using this method. A key factor that allows the solid product to be primarily oxide Cu2O instead of metal Cu – the product predicted by the equilibrium Pourbaix diagram given the unusually large absolute deposition voltage used in this method, is the non-equilibrium condition involved in the process due to the short deposition time. Other factors including the motion of the extrusion nozzle relative to the substrate and the surface profile of the substrate that influence the electrodeposition performance are also discussed.

Highlights

  • For ceramic pattern production, this technique is more viable than other contemporary fabrication methods such as selective-laser sintering (SLS)[8] or inkjet printing[9,10,11]

  • The wider use of these methods is limited by the fact that the dimensions of patterns that can be deposited are constrained by the size of the electrolyte bath as well as that of the patterned mask that can be made, i.e. such selective electrodeposition methods would not be applicable to making long wires or lines

  • Hu and Yu have demonstrated the production of metallic micro-wires by manipulating the meniscus of a micro-stream of electrolyte in 3D14, but since the electrochemical reaction in this case is sustained by the conductivity of the already formed wire length connected to the meniscus, this method would not be applicable to ceramics with poorer conductivity

Read more

Summary

Introduction

This technique is more viable than other contemporary fabrication methods such as selective-laser sintering (SLS)[8] or inkjet printing[9,10,11]. The wider use of these methods is limited by the fact that the dimensions of patterns that can be deposited are constrained by the size of the electrolyte bath as well as that of the patterned mask that can be made, i.e. such selective electrodeposition methods would not be applicable to making long wires or lines For the latter, Hu and Yu have demonstrated the production of metallic micro-wires by manipulating the meniscus of a micro-stream of electrolyte in 3D14, but since the electrochemical reaction in this case is sustained by the conductivity of the already formed wire length connected to the meniscus, this method would not be applicable to ceramics with poorer conductivity. Our method involves much smaller volumes of electrolyte and fast motion of the anode, and such factors were found to result in non-equilibrium condition which is a key factor for the production of primarily oxide in the electrodeposition product

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.