Abstract

Direct measurements of the force between hydrophobic surfaces across aqueous solutions are reviewed. The results are presented according to the method of preparation of the hydrophobic surfaces. No single model appears to fit all published results, and an attempt is made to classify the measured interactions in three different categories. The large variation of the measured interaction, often within each class, depending on the type of hydrophobic surface is emphasized. (I) Stable hydrophobic surfaces show only a comparatively short-range interaction, although little quantitative data on this attraction have been published. (II) Many results showing very long-range attractive forces are most likely due to the presence of sub-microscopic bubbles on the hydrophobic surfaces. Such an interaction is typically measured between silica surfaces made hydrophobic by silylation. Between self-assembled thiol layers on gold surfaces very short-range attractive forces are possibly due to the presence or nucleation of bubbles. The reason for the apparent stability of these bubbles is not clear and warrants further investigation. (III) Results obtained with LB films of surfactants or lipids on mica appear to give rise to a different type of force that fits neither of these two categories. This force is an exponentially decaying attraction, often of considerable range. The force turns more attractive at smaller separations, and may at short range be similar to the interaction measured between stable hydrophobic surfaces. An apparently similar, exponential attraction is also found between mica surfaces bearing surfactants adsorbed from cyclohexane, between silylated, plasma-treated mica surfaces and between both mica and silica surfaces with surfactants adsorbed in situ. This type of force also occurs between some surfaces of relatively low hydrophobicity as well as between one such hydrophobic surface and a hydrophilic surface. No convincing model can explain this third type of interaction for all systems in which it has been observed. This review of work to date points to the importance of the morphology and structure of the hydrophobic surface, and how it may change during the interaction of two surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.