Abstract

The mixture fraction variable, ξ, is very useful in describing reaction zone structure in nonpremixed flames. Extinction limits and turbulent mixing are often described as a function of this variable. Experimental evaluation of ξ is critical for improving our understanding of the influence of turbulent mixing on the chemistry process. Heretofore, the evaluation of mixture fraction in combusting flow required multiple simultaneous concentration measurements. In this paper we present a fuel designed to permit measurements of mixture fraction by Rayleigh scattering technique only. A Rayleigh intensity/mixture fraction correspondence has been obtained experimentally in a laminar coflow flame. The influence of strain rate and differential diffusion effects have been investigated using laminar counterflow diffusion flame and shifting equilibrium chemistry models. The results obtained from comparisons between experiments and these models are very encouraging and suggest that the Rayleigh/mixture fraction correspondence established is valid under both the turbulent mixing and laminar strained flamelet combustion regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.