Abstract

The redistribution of ions in light-emitting electrochemical cells (LECs) plays a key role in their functionality. The direct quantitative mapping of ion density distributions in operating realistic sandwich-type devices, however, has not been experimentally achieved. Here we operate high-performing [Super Yellow/trimethylolpropane ethoxylate/lithium trifluoromethanesulfonate (Li+CF3SO3-)] LEC devices inside a time-of-flight secondary ion mass spectrometer and cool the devices after different operation times to liquid nitrogen temperatures before depth profiling is performed. The results reveal the dependence of the elemental and molecular distributions across the device layer on operation conditions. We find that the ion displacements lead to a substantial shift of the local chemical equilibria governing the free ion concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.