Abstract

A quantitative knowledge of inter-filament transverse resistance will allow us to describe current redistribution processes inside strands more accurately. This is particularly important for the analysis of the influence of strain and crack distribution patterns in Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn filaments on the shape of the voltage-current curves. Several indirect methods are commonly used to assess inter-filament resistance. Here we use a direct method to measure transverse inter-filament resistance and filament-to-matrix contact resistance. Two four-probe voltage-current methods are developed for measurements below 10 K at various background magnetic fields. In addition to FEM (Finite Element Method) simulation, also a new 3D strand model is developed to simulate the current- and voltage distributions. The experimental methods, first results as well as the simulations using the FEM method and new 3D strand model are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.