Abstract

Saccharomyces cerevisiae Kex2 protease is the prototype for the family of eukaryotic proprotein convertases that includes furin, PC1/3, and PC2. These enzymes belong to the subtilase superfamily of serine proteases and are distinguished from degradative subtilisins by structural features and by their much more stringent substrate specificity. Pre-steady-state studies have shown that both Kex2 and furin exhibit an initial burst of 7-amino-4-methylcoumarin release in cleavage of peptidyl methylcoumarinamide substrates that are based on physiological cleavage sites. Thus, in cleavage of such substrates, formation of the acylenzyme intermediate is fast relative to some later step (deacylation or N-terminal product release). This behavior is significant, because Kex2 also exhibits burst kinetics in cleavage of peptide bonds. k(cat) for cleavage of a tetrapeptidyl methylcoumarinamide substrate based on the physiological yeast substrate pro-alpha-factor exhibits a weak solvent isotope effect, but neither this isotope effect nor temperature dependence studies with this substrate conclusively identify the rate-limiting step for Kex2 cleavage of this substrate. We therefore developed an assay to measure deacylation directly by pulse-chase incorporation of H(2)(18)O in a rapid-quenched-flow mixer followed by mass spectrometric quantitation. The results given by this assay rule out rate-limiting product release for cleavage of this substrate by Kex2. These experiments demonstrate that cleavage of the acylenzyme ester bond, as opposed to either the initial attack on the amide bond or product release, is rate-limiting for the action of Kex2 at physiological sequences. This work demonstrates a fundamental difference in the catalytic strategy of proprotein processing enzymes and degradative subtilisins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.