Abstract

Direct lineage reprogramming is the conversion of one specialized cell type to another without the need for a pluripotent intermediate. To date, a wide variety of cell types have been successfully generated using direct reprogramming, both in vitro and in vivo. These newly converted cells have the potential to replace cells that are lost to disease and/or injury. In this chapter, we will focus on direct reprogramming in the central nervous system. We will review current progress in the field with regards to all the major neural cell types and explore how cellular heterogeneity, both in the starter cell and target cell population, may have implications for direct reprogramming. Finally, we will discuss new technologies that will improve our understanding of the reprogramming process and aid the development of more specific and efficient future CNS-based reprogramming strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.