Abstract

Charge transfer plays fundamental roles in information transmission in cells, especially in neurons. To date, direct observation of charge propagation in neurons at nanometer level has not been achieved yet. Herein, a combined charge injection and Electrostatic Force Microscopy (EFM) detection approach is applied to directly study charge propagation and distribution at nanometer resolution in spines and synapses of hippocampal neurons. Charge density, charge mobility and membrane potential in neural signal transmission process through the spines of axons and dendrites of hippocampal neurons were investigated quantitatively. Postsynaptic densities (PSD) in spines of axons and dendrites were revealed and studied. The methods and results from present work provide insights into physiological activities and processes related with electrical properties in nervous system and other biological samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.